По имени

Фильтрация анизотропная. Практическое использование расширений: анизотропная фильтрация. Журналистское расследование: трюки ATi с оптимизацией текстурной фильтрации

С появлением 3D-игр стали появляться проблемы, которых в 2D-играх не было: ведь теперь нужно на плоский монитор вывести трехмерную картинку. Если объект находится параллельно плоскости экрана вблизи его - проблем нет: одному пикселю соответствует один тексель (тексель – это пиксель двухмерного изображения, наложенного на 3D-поверхность). А вот что делать, если объект наклонен или находится вдали? Ведь тогда на один пиксель приходится несколько текселей, и поскольку монитор имеет ограниченное количество пикселей, то цвет каждого приходится рассчитывать из нескольких текселей путем определенного процесса - фильтрации.


Для упрощения понимания представим, что каждый пиксель - это квадратная «дырочка» в мониторе, из глаз мы пускаем «лучи света», а тексели расположены на квадратной решетке за монитором. Если мы расположим решетку параллельно монитору сразу за ним, то свет от одного пиксель накроет только один тексель. Теперь мы начнем отодвигать решетку - что мы получим? То, что наше пятно света от пикселя накроет уже больше, чем один тексель. Теперь повернем решетку - получим тоже самое: пятно от одного пикселя накроет множество текселей. Но ведь пиксель-то может иметь один цвет, и если в него попадает много текселей, то нужен алгоритм, с помощью которого мы будем определять его цвет - он называется фильтрацией текстур.


Это самый простой алгоритм фильтрации: он основан на том, что за цвет пикселя мы берем цвет текселя, который находится ближе всего к центру светового пятна от пикселя. Плюс этого метода очевиден - он меньше всего нагружает видеокарту. Минусов тоже полно - цвет одного центрального текселя, может существенно отличаться от цвета десятков и даже сотен других текселей, которые попадают в пятно от пикселя. К тому же сама форма пятна может серьезно меняться, а его центр при этом может остаться на том же месте, и в итоге цвет пикселя не изменится. Ну и самый главный минус - проблема «блочности»: когда на один пиксель приходится мало текселей (то есть объект рядом с игроком), то мы получаем, что при таком способе фильтрации достаточно большая часть изображения заливается одним цветом, что приводит к явно видным «блокам» одного цвета на экране. Итоговое качество картинки получается... просто ужасным:


Так что не удивительно, что сейчас такая фильтрация больше не используется.


С развитием видеокарт стала расти их мощность, так что разработчики игр пошли дальше: если брать за цвет пикселя один тексель, то получается плохо. Окей - а давайте возьмем средний цвет от 4 текселей и назовем это билинейной фильтрацией? С одной стороны, все станет лучше - блочность исчезнет. Зато придет враг номер два - расплывчатость картинки вблизи игрока: это получается из-за того, что для интерполяции требуется больше текселей, чем четыре.

Но главная проблема не в этом: билинейная фильтрация хорошо работает тогда, когда объект параллелен экрану: тогда всегда можно выбрать 4 текселя и получить «средний» цвет. Но вот 99% текстур наклонены по отношению к игроку, и получается, что мы аппроксимируем 4 прямоугольных параллелепипеда (или трапеции) как 4 квадрата, что неверно. И чем сильнее наклонена текстура, чем ниже точность цвета и сильнее размытие:


Окей, сказали разработчики игр - раз 4 текселей мало, возьмем два раза по четыре, и для более точного попадания в цвет будем использовать технологию MIP-текстурирования. Как я уже писал выше - чем дальше от игрока текстура, чем больше текселей будет в пикселе, и тем труднее видеокарте обработать картинку. MIP-текстурирование же подразумевает хранение одной и той же текстур в разных разрешениях: к примеру, если исходный размер текстуры 256х256, то в памяти хранятся ее копии в 128х128, 64х64 и так далее, вплоть до 1х1:


И теперь для фильтрации берется не только сама текстура, но и мипмап: в зависимости от того, дальше или ближе текстура от игрока берется или меньший, или больший мипмап текстуры, и уже на нем берется 4 текселя, ближайшие к центру пикселя, и проводится билинейная фильтрация. Далее берется 4 текселя, ближайших к пикселю, уже исходной текстуры, и опять получается «средний» цвет. После чего берется «средний» цвет уже от средних цветов мипмапа и исходной текстуры, и присваивается пикселю - так и работает алгоритм трилинейной фильтрации. В итоге видеокарту он нагружает несколько больше, чем билинейная фильтрация (нужно обработать еще и мипмап), но и качество картинки оказывается лучше:


Как видно, трилинейная фильтрация серьезно лучше билинейной и уж тем более точечной, но все еще картинка на дальних дистанциях «мылится». И нечеткой картинка получается из-за того, что мы не учитываем то, что текстура может быть наклонена относительно игрока - и именно эту проблему и решает анизотропная фильтрация. Вкратце принцип работы анизотропной фильтрации такой: берется MIP-текстура, установленная поперёк направления обзора, после чего происходит усреднение значений ее цветов с цветом некого количества текселей вдоль направления обзора. Количество текселей варьируется от 16 (для х2 фильтрации) до 128 (для х16). Говоря проще - вместо квадратного фильтра (как в билинейной фильтрации) используется вытянутый, что позволяет более качественно выбрать нужный цвет для экранного пикселя. Так как пикселей на экране может быть миллион и даже больше, а каждый тексель весит не менее 32 бит (32-битный цвет), анизотропная фильтрация требует огромной пропускной способности видеопамяти - десятки гигабайт в секунду. Столь большие требования к памяти уменьшают за счёт сжатия текстур и кэширования, но все еще на видеокартах с DDR-памятью или 64-битной шиной разница между трилинейной и х16 анизотропной фильтрацией может достигать 10-15% fps, но и картинка после такой фильтрации оказывается наилучшей:

В современных играх используется все больше графических эффектов и технологий, улучшающих картинку. При этом разработчики обычно не утруждают себя объяснением, что же именно они делают. Когда в наличии не самый производительный компьютер, частью возможностей приходится жертвовать. Попробуем рассмотреть, что обозначают наиболее распространенные графические опции, чтобы лучше понимать, как освободить ресурсы ПК с минимальными последствиями для графики.

Анизотропная фильтрация
Когда любая текстура отображается на мониторе не в своем исходном размере, в нее необходимо вставлять дополнительные пикселы или, наоборот, убирать лишние. Для этого применяется техника, называемая фильтрацией.


трилинейная

анизотропная

Билинейная фильтрация является самым простым алгоритмом и требует меньше вычислительной мощности, однако и дает наихудший результат. Трилинейная добавляет четкости, но по-прежнему генерирует артефакты. Наиболее продвинутым способом, устраняющим заметные искажения на объектах, сильно наклоненных относительно камеры, считается анизотропная фильтрация. В отличие от двух предыдущих методов она успешно борется с эффектом ступенчатости (когда одни части текстуры размываются сильнее других, и граница между ними становится явно заметной). При использовании билинейной или трилинейной фильтрации с увеличением расстояния текстура становится все более размытой, анизотропная же этого недостатка лишена.

Учитывая объем обрабатываемых данных (а в сцене может быть множество 32-битовых текстур высокого разрешения), анизотропная фильтрация особенно требовательна к пропускной способности памяти. Уменьшить трафик можно в первую очередь за счет компрессии текстур, которая сейчас применяется повсеместно. Ранее, когда она практиковалась не так часто, а пропуская способность видеопамяти была гораздо ниже, анизотропная фильтрация ощутимо снижала количество кадров. На современных же видеокартах она почти не влияет на fps.

Анизотропная фильтрация имеет лишь одну настройку коэффициент фильтрации (2x, 4x, 8x, 16x). Чем он выше, тем четче и естественнее выглядят текстуры. Обычно при высоком значении небольшие артефакты заметны лишь на самых удаленных пикселах наклоненных текстур. Значений 4x и 8x, как правило, вполне достаточно для избавления от львиной доли визуальных искажений. Интересно, что при переходе от 8x к 16x снижение производительности будет довольно слабым даже в теории, поскольку дополнительная обработка понадобится лишь для малого числа ранее не фильтрованных пикселов.

Шейдеры
Шейдеры это небольшие программы, которые могут производить определенные манипуляции с 3D-сценой, например, изменять освещенность, накладывать текстуру, добавлять постобработку и другие эффекты.

Шейдеры делятся на три типа: вершинные (Vertex Shader) оперируют координатами, геометрические (Geometry Shader) могут обрабатывать не только отдельные вершины, но и целые геометрические фигуры, состоящие максимум из 6 вершин, пиксельные (Pixel Shader) работают с отдельными пикселами и их параметрами.

Шейдеры в основном применяются для создания новых эффектов. Без них набор операций, которые разработчики могли бы использовать в играх, весьма ограничен. Иными словами, добавление шейдеров позволило получать новые эффекты, по умолчанию не заложенные в видеокарте.

Шейдеры очень продуктивно работают в параллельном режиме, и именно поэтому в современных графических адаптерах так много потоковых процессоров, которые тоже называют шейдерами.

Parallax mapping
Parallax mapping это модифицированная версия известной техники bumpmapping, используемой для придания текстурам рельефности. Parallax mapping не создает 3D-объектов в обычном понимании этого слова. Например, пол или стена в игровой сцене будут выглядеть шероховатыми, оставаясь на самом деле абсолютно плоскими. Эффект рельефности здесь достигается лишь за счет манипуляций с текстурами.

Исходный объект не обязательно должен быть плоским. Метод работает на разных игровых предметах, однако его применение желательно лишь в тех случаях, когда высота поверхности изменяется плавно. Резкие перепады обрабатываются неверно, и на объекте появляются артефакты.

Parallax mapping существенно экономит вычислительные ресурсы компьютера, поскольку при использовании объектов-аналогов со столь же детальной 3D-структурой производительности видеоадаптеров не хватало бы для просчета сцен в режиме реального времени.

Эффект чаще всего применяется для каменных мостовых, стен, кирпичей и плитки.

Anti-Aliasing
До появления DirectX 8 сглаживание в играх осуществлялось методом SuperSampling Anti-Aliasing (SSAA), известным также как Full-Scene Anti-Aliasing (FSAA). Его применение приводило к значительному снижению быстродействия, поэтому с выходом DX8 от него тут же отказались и заменили на Multisample Аnti-Аliasing (MSAA). Несмотря на то что данный способ давал худшие результаты, он был гораздо производительнее своего предшественника. С тех пор появились и более продвинутые алгоритмы, например CSAA.

AA off AA on

Учитывая, что за последние несколько лет быстродействие видеокарт заметно увеличилось, как AMD, так и NVIDIA вновь вернули в свои ускорители поддержку технологии SSAA. Тем не менее использовать ее даже сейчас в современных играх не получится, поскольку количество кадров/с будет очень низким. SSAA окажется эффективной лишь в проектах предыдущих лет, либо в нынешних, но со скромными настройками других графических параметров. AMD реализовала поддержку SSAA только для DX9-игр, а вот в NVIDIA SSAA функционирует также в режимах DX10 и DX11.

Принцип работы сглаживания очень прост. До вывода кадра на экран определенная информация рассчитывается не в родном разрешении, а увеличенном и кратном двум. Затем результат уменьшают до требуемых размеров, и тогда «лесенка» по краям объекта становится не такой заметной. Чем выше исходное изображение и коэффициент сглаживания (2x, 4x, 8x, 16x, 32x), тем меньше ступенек будет на моделях. MSAA в отличие от FSAA сглаживает лишь края объектов, что значительно экономит ресурсы видеокарты, однако такая техника может оставлять артефакты внутри полигонов.

Раньше Anti-Aliasing всегда существенно снижал fps в играх, однако теперь влияет на количество кадров незначительно, а иногда и вовсе никак не cказывается.

Тесселяция
С помощью тесселяции в компьютерной модели повышается количество полигонов в произвольное число раз. Для этого каждый полигон разбивается на несколько новых, которые располагаются приблизительно так же, как и исходная поверхность. Такой способ позволяет легко увеличивать детализацию простых 3D-объектов. При этом, однако, нагрузка на компьютер тоже возрастет, и в ряде случаев даже не исключены небольшие артефакты.

На первый взгляд, тесселяцию можно спутать с Parallax mapping. Хотя это совершенно разные эффекты, поскольку тесселяция реально изменяет геометрическую форму предмета, а не просто симулирует рельефность. Помимо этого, ее можно применять практически для любых объектов, в то время как использование Parallax mapping сильно ограничено.

Технология тесселяции известна в кинематографе еще с 80-х годов, однако в играх она стала поддерживаться лишь недавно, а точнее после того, как графические ускорители наконец достигли необходимого уровня производительности, при котором она может выполняться в режиме реального времени.

Чтобы игра могла использовать тесселяцию, ей требуется видеокарта с поддержкой DirectX 11.

Вертикальная синхронизация

V-Sync это синхронизация кадров игры с частотой вертикальной развертки монитора. Ее суть заключается в том, что полностью просчитанный игровой кадр выводится на экран в момент обновления на нем картинки. Важно, что очередной кадр (если он уже готов) также появится не позже и не раньше, чем закончится вывод предыдущего и начнется следующего.

Если частота обновления монитора составляет 60 Гц, и видеокарта успевает просчитывать 3D-сцену как минимум с таким же количеством кадров, то каждое обновление монитора будет отображать новый кадр. Другими словами, с интервалом 16,66 мс пользователь будет видеть полное обновление игровой сцены на экране.

Следует понимать, что при включенной вертикальной синхронизации fps в игре не может превышать частоту вертикальной развертки монитора. Если же число кадров ниже этого значения (в нашем случае меньше, чем 60 Гц), то во избежание потерь производительности необходимо активировать тройную буферизацию, при которой кадры просчитываются заранее и хранятся в трех раздельных буферах, что позволяет чаще отправлять их на экран.

Главной задачей вертикальной синхронизации является устранение эффекта сдвинутого кадра, возникающего, когда нижняя часть дисплея заполнена одним кадром, а верхняя уже другим, сдвинутым относительно предыдущего.

Post-processing
Это общее название всех эффектов, которые накладываются на уже готовый кадр полностью просчитанной 3D-сцены (иными словами, на двухмерное изображение) для улучшения качества финальной картинки. Постпроцессинг использует пиксельные шейдеры, и к нему прибегают в тех случаях, когда для дополнительных эффектов требуется полная информация обо всей сцене. Изолированно к отдельным 3D-объектам такие приемы не могут быть применены без появления в кадре артефактов.

High dynamic range (HDR)
Эффект, часто используемый в игровых сценах с контрастным освещением. Если одна область экрана является очень яркой, а другая, наоборот, затемненной, многие детали в каждой из них теряются, и они выглядят монотонными. HDR добавляет больше градаций в кадр и позволяет детализировать сцену. Для его применения обычно приходится работать с более широким диапазоном оттенков, чем может обеспечить стандартная 24-битовая точность. Предварительные просчеты происходят в повышенной точности (64 или 96 бит), и лишь на финальной стадии изображение подгоняется под 24 бита.

HDR часто применяется для реализации эффекта приспособления зрения, когда герой в играх выходит из темного туннеля на хорошо освещенную поверхность.

Bloom
Bloom нередко применяется совместно с HDR, а еще у него есть довольно близкий родственник Glow, именно поэтому эти три техники часто путают.

Bloom симулирует эффект, который можно наблюдать при съемке очень ярких сцен обычными камерами. На полученном изображении кажется, что интенсивный свет занимает больше объема, чем должен, и «залазит» на объекты, хотя и находится позади них. При использовании Bloom на границах предметов могут появляться дополнительные артефакты в виде цветных линий.

Film Grain
Зернистость артефакт, возникающий в аналоговом ТВ при плохом сигнале, на старых магнитных видеокассетах или фотографиях (в частности, цифровых изображениях, сделанных при недостаточном освещении). Игроки часто отключают данный эффект, поскольку он в определенной мере портит картинку, а не улучшает ее. Чтобы понять это, можно запустить Mass Effect в каждом из режимов. В некоторых «ужастиках», например Silent Hill, шум на экране, наоборот, добавляет атмосферности.

Motion Blur
Motion Blur эффект смазывания изображения при быстром перемещении камеры. Может быть удачно применен, когда сцене следует придать больше динамики и скорости, поэтому особенно востребован в гоночных играх. В шутерах же использование размытия не всегда воспринимается однозначно. Правильное применение Motion Blur способно добавить кинематографичности в происходящее на экране.

Эффект также поможет при необходимости завуалировать низкую частоту смены кадров и добавить плавности в игровой процесс.

SSAO
Ambient occlusion техника, применяемая для придания сцене фотореалистичности за счет создания более правдоподобного освещения находящихся в ней объектов, при котором учитывается наличие поблизости других предметов со своими характеристиками поглощения и отражения света.

Screen Space Ambient Occlusion является модифицированной версией Ambient Occlusion и тоже имитирует непрямое освещение и затенение. Появление SSAO было обусловлено тем, что при современном уровне быстродействия GPU Ambient Occlusion не мог использоваться для просчета сцен в режиме реального времени. За повышенную производительность в SSAO приходится расплачиваться более низким качеством, однако даже его хватает для улучшения реалистичности картинки.

SSAO работает по упрощенной схеме, но у него есть множество преимуществ: метод не зависит от сложности сцены, не использует оперативную память, может функционировать в динамичных сценах, не требует предварительной обработки кадра и нагружает только графический адаптер, не потребляя ресурсов CPU.

Cel shading
Игры с эффектом Cel shading начали делать с 2000 г., причем в первую очередь они появились на консолях. На ПК по-настоящему популярной данная техника стала лишь через пару лет. С помощью Cel shading каждый кадр практически превращается в рисунок, сделанный от руки, или фрагмент из мультика.

В похожем стиле создают комиксы, поэтому прием часто используют именно в играх, имеющих к ним отношение. Из последних известных релизов можно назвать шутер Borderlands, где Cel shading заметен невооруженным глазом.

Особенностями технологии является применение ограниченного набора цветов, а также отсутствие плавных градиентов. Название эффекта происходит от слова Cel (Celluloid), т. е. прозрачного материала (пленки), на котором рисуют анимационные фильмы.

Depth of field
Глубина резкости это расстояние между ближней и дальней границей пространства, в пределах которого все объекты будут в фокусе, в то время как остальная сцена окажется размытой.

В определенной мере глубину резкости можно наблюдать, просто сосредоточившись на близко расположенном перед глазами предмете. Все, что находится позади него, будет размываться. Верно и обратное: если фокусироваться на удаленных объектах, то все, что размещено перед ними, получится нечетким.

Лицезреть эффект глубины резкости в гипертрофированной форме можно на некоторых фотографиях. Именно такую степень размытия часто и пытаются симулировать в 3D-сценах.

В играх с использованием Depth of field геймер обычно сильнее ощущает эффект присутствия. Например, заглядывая куда-то через траву или кусты, он видит в фокусе лишь небольшие фрагменты сцены, что создает иллюзию присутствия.

Влияние на производительность

Чтобы выяснить, как включение тех или иных опций сказывается на производительности, мы воспользовались игровым бенчмарком Heaven DX11 Benchmark 2.5. Все тесты проводились на системе Intel Core2 Duo e6300, GeForce GTX460 в разрешении 1280Ч800 точек (за исключением вертикальной синхронизации, где разрешение составляло 1680Ч1050).

Как уже упоминалось, анизотропная фильтрация практически не влияет на количество кадров. Разница между отключенной анизотропией и 16x составляет всего лишь 2 кадра, поэтому рекомендуем ее всегда ставить на максимум.

Сглаживание в Heaven Benchmark снизило fps существеннее, чем мы того ожидали, особенно в самом тяжелом режиме 8x. Тем не менее, поскольку для ощутимого улучшения картинки достаточно и 2x, советуем выбирать именно такой вариант, если на более высоких играть некомфортно.

Тесселяция в отличие от предыдущих параметров может принимать произвольное значение в каждой отдельной игре. В Heaven Benchmark картинка без нее существенно ухудшается, а на максимальном уровне, наоборот, становится немного нереалистичной. Поэтому следует устанавливать промежуточные значения moderate или normal.

Для вертикальной синхронизации было выбрано более высокое разрешение, чтобы fps не ограничивался вертикальной частотой развертки экрана. Как и предполагалось, количество кадров на протяжении почти всего теста при включенной синхронизации держалось четко на отметке 20 или 30 кадров/с. Это связано с тем, что они выводятся одновременно с обновлением экрана, и при частоте развертки 60 Гц это удается сделать не с каждым импульсом, а лишь с каждым вторым (60/2 = 30 кадров/с) или третьим (60/3 = 20 кадров/с). При отключении V-Sync число кадров увеличилось, однако на экране появились характерные артефакты. Тройная буферизация не оказала никакого положительного эффекта на плавность сцены. Возможно, это связано с тем, что в настройках драйвера видеокарты нет опции принудительного отключения буферизации, а обычное деактивирование игнорируется бенчмарком, и он все равно использует эту функцию.

Если бы Heaven Benchmark был игрой, то на максимальных настройках (1280Ч800; AA 8x; AF 16x; Tessellation Extreme) в нее было бы некомфортно играть, поскольку 24 кадров для этого явно недостаточно. С минимальной потерей качества (1280Ч800; AA 2x; AF 16x, Tessellation Normal) можно добиться более приемлемого показателя в 45 кадров/с.



Фильтрация анизотропная представляет собой один из таких элементов развития современной графики, который заставляет многих пользователей рассуждать на тему того, насколько сегодня стали доступными различные технологии улучшения изображения для пользователей.

Ведь не стоит скрывать того, что именно геймерам сегодня столько важна максимально качественная трехмерная графика, и именно они на сегодняшний день представляют собой практически единственных потребителей всевозможных новых технологий в области видеокарт. Ведь высокомощный акселератор на данный момент может потребоваться только в том случае, если нужно запустить какую-нибудь игру последнего поколения, в которой присутствует действительно требовательный движок, оперирующий сложнейшими шейдерами различных версий.

Какими бывают карты?

Делать какой-то сверхразвитый движок в наше время - это достаточно серьезная трата средств. И при этом весомый риск. Такими приемами пользуются только высокобюджетные проекты с масштабной рекламой, которые заранее, еще до выхода, уверены в том, что игру будут активно сметать с прилавков. Также следует отметить тот факт, что в последнее время особенное внимание уделяется «политике» касательно современных игровых движков, ведь в сфере игростроя давным-давно присутствует политика, которая предпочитает учитывать интересы двух передовых компаний в области графических процессоров - это NVIDIA и ATI.

Компании достаточно давно соперничают между собой, и на самом деле нет никаких перспектив того, что в ближайшем будущем это противостояние сможет закончиться, однако потребителям это только на руку. Теперь уже мало просто разработать действительно качественный движок, нужно еще и заручиться поддержкой одного из производителей, которые даже создали собственные партнерские программы для игроделов.

А графика все растет и растет…

Сделать абсолютную революцию в сфере графических 3D-движков достаточно сложно, вследствие чего такие перевороты происходят относительно редко. Однако при этом, конечно же, качество изображения периодически улучшается с течением времени и, как ни странно, происходит это как раз под выход какой-то определенной «продающейся» игры наподобие Crysis.

Именно на основе анизотропной фильтрации, а также так называемого антиалиасинга, осуществляется на сегодняшний день выпуск огромнейшего количества различных драйверов видеокарт каждого производителя, при этом каждая компания использует собственный подход и политику касательно данной оптимизации, которая достаточно часто оказывается справедливой далеко не для всех пользователей.

Что такое анизотропная фильтрация?

Фильтрация анизотропная - это специализированный способ улучшения текстур на поверхностях, которые находятся под определенным углом относительно камеры. Точно так же, как трилинейная или же билинейная, анизотропная позволяет полностью устранить алиасинг на разных поверхностях, но при этом вносит минимум размытия, благодаря чему сохраняется предельная детальность изображения.

Стоит отметить тот факт, что анизотропная фильтрация в играх реализуется посредством сложного вычисления, поэтому обеспечение относительно небольшой «прожорливости» данной настройки в играх стало наблюдаться только с 2004 года.

Для того чтобы понять, что представляет собой фильтрация анизотропная, нужно иметь определенные базовые знания в данной области. Конечно, сегодня каждый пользователь прекрасно понимает, что изображение на экране составляется из огромнейшего количества различных пикселей, количество которых непосредственно зависит от разрешения. Для того чтобы вывести изображение на экран, видеокартой должен быть обработан цвет каждого пикселя.

Принцип действия

Выбирается определенная текстура, которая соответствует разрешению, находящемуся поперек направления обзора. После этого берется несколько текселей, находящихся вдоль направления обзора, после чего осуществляется усреднение их цветов.

Так как на экране может находиться более одного миллиона пикселей, а каждый тексель при этом составляет не менее 32 бит, анизотропная фильтрация в играх требует невероятно большой пропускной способности видеокарты, которую не обеспечивают многие даже самые современные устройства. Именно по этой причине такие большие требования к памяти уменьшаются за счет использования кэширования, а также специализированных технологий сжатия текстур.

Как это работает?

Определение цвета пикселей осуществляется путем наложения на полигоны текстурных изображений, состоящих из пикселей двухмерного изображения - текселей, которые накладываются на 3D-поверхность. Главная дилемма в данном случае заключается в том, какие именно тексели будут определять цвет пикселя на экране. Для того чтобы более глубоко понять особенность, которой отличается фильтрация анизотропная, нужно представить, что ваш экран - это большая плита, на которой находится огромнейшее количество разнообразных отверстий, каждое из которых представляет собой пиксель.

Чтобы определить цвет пикселя на какой-либо трехмерной сцене, которая находится за данной плитой, вполне достаточно просто посмотреть в соответствующее отверстие. Теперь представим, что луч света проходит через него, после чего попадает на наш полигон, и если он будет располагаться параллельно касательно места своего входа, то в таком случае получится круглое световое пятно. Если же нет, то пятно будет несколько искаженным, т. е. будет иметь уже форму эллипса. Именно полигоны, которые располагаются в световом пятне, и будут определять цвет каждого конкретного пикселя.

Зачем она нужна?

Многие считают, что анизотропная фильтрация используется исключительно для того, чтобы обеспечить более качественное изображение, однако на самом деле это просто конечный результат, который обеспечивается далеко не только за счет самой фильтрации.

При формировании образа определенной текстуры программистами задается два уровня фильтрации текстур, которые представляют собой фильтры минимальной и предельной дистанции, определяющие то, какая конкретно функция фильтрации будет использоваться в процессе формирования образа текстуры в том случае, если камера будет отдаляться или же приближаться к нему.

К примеру, можно рассмотреть, когда анизотропная или трилинейная фильтрация используется при сближении, то есть когда каждый тексель начинает иметь большие габариты, и уже покрывает одновременно несколько пикселей. Для того чтобы убрать в данной ситуации ступенчатость, и будет использована фильтрация. При этом нужно отметить, что в такой ситуации данное решение является далеко не оптимальным, так как фильтрация (анизотропная или трилинейная) немного смазывает изображение. Для того чтобы придать более реалистичный вид картинке, потребуется увеличение разрешения самой текстуры.

Что лучше выбрать?

Конечно, у любого пользователя и простого геймера возникает вполне логичный вопрос. Сегодня есть трилинейная и анизотропная фильтрация - какая лучше? На самом деле лучше, конечно же, именно анизотропная технология. Все дело в том, что трилинейная фильтрация не очень правильно рассчитывает цвет каждого отдельного текселя, а если говорить более точно, то вовсе неправильно его рассчитывает, если речь идет о наклонных плоскостях. Применение анизотропной технологии позволяет дополнить использующиеся на данный момент режимы фильтрации, регулируя угол. При этом чем большим будет угол, тем более высоким будут реалистичность и качество, которые способна обеспечить анизотропная фильтрация текстур. Однако в то же время нужно понимать, что потребуется и большее количество мощности карты на обработку данных.

Насколько это помогает?

Вам не следует ожидать того, что в конечном итоге после включения данной функции трехмерная графика сказочно улучшится, скорее на больших углах даже будет получена определенная смазанность, однако в общем результате вы получите более реалистичную картинку. В связи с этим каждый для себя самостоятельно решает, стоит ли ему использовать эту функцию и насколько она будет для него продуктивной.

Так как очень сильного улучшения качества картинки данная функция не обеспечивает, те люди, которые стараются обеспечить максимальную производительность игры на не самых сильных компьютерах, ищут, как отключить анизотропную фильтрацию. Требовательность данной функции является немного несоизмеримой по сравнению с тем, какой результат она обеспечивает, поэтому стоит задуматься о том, чтобы отключить ее в первую очередь.

Point Sampling

Point Sampling на сегодняшний день представляет собой наиболее простой вариант того, как определяется цвет пикселя. Данный алгоритм основывается на текстурном изображении, когда выбирается какой-нибудь единственный тексель, расположенный максимально близко к центру светового пятна. Несложно догадаться, что такой вариант является далеко не самым оптимальным, так как цвет пикселя должен определяться одновременно несколькими текселями, а выбирается в данном случае только один, при этом световое пятно может изменять свою форму, что алгоритм не принимает во внимание.

Главным недостатком, которым отличается такая фильтрация анизотропная, является то, что при достаточно близком расположении к экрану количество пикселей будет значительно увеличиваться по сравнению с количеством текселей, вследствие чего изображение становится далеко не таким интересным. Так называемый эффект блочности многие часто наблюдают в "древних" компьютерных играх.

Тесты производительности:

И вот, теперь, когда мы ознакомились с основными понятиями о фильтрации и сглаживании текстур, можно перебираться на практику.

Конфигурация компьютера:
Процессор: Intel Core 2 Quad Q6600 @ 3200MHz (400x8, 1.3125V)
Видеокарта: Palit Nvidia GeForce 8800GT
Материнская плата: Asus P5Q PRO TURBO
Память: 2x2048MB DDR2 Corsair XMS2 @ 1066MHz, 5-5-5-15
Блок питания: Corsair CMPSU-850HXEU 850W
Процессорный кулер: Zalman CNPS9700 LED
ОС: Windows 7 Ultimate x64
Версия видео драйвера: Nvidia 195.62 x64

Главным испытуемым в нашем сегодняшнем тестировании стала очень старая, но не менее знаменитая Counter-Strike:Source, поскольку эта одна из немногих по-настоящему распространенных игр, предоставляющих огромный набор различных настроек сглаживания и фильтрации. Несмотря на древность движка (2004 год), данная игра по-прежнему может неплохо нагрузить даже самую современную платформу. Вот такой богатый ассортимент настроек представлен пользователю:

Тесты сглаживания и фильтрации проводились во встроенном бенчмарке, при разрешении 1280x1024. Все остальные настройки были приняты за максимальные, как на скриншоте сверху. С целью максимально приблизить результат к истине, каждый параметр тестировался трижды, после чего находилось среднее арифметическое получившихся значений.

И так, что же у нас получилось:

Результаты получились достаточно неожиданными. Технология coveragesampling (CSAA), которая по определению должна потреблять меньше ресурсов чем MSAA, здесь показывает совершенно обратную картину. Причин данного явления может быть великое множество. Прежде всего необходимо учитывать, что во многом производительность при включении сглаживания зависит от архитектуры GPU. Да и оптимизация различных технологий самой игры и версия драйвера играют не меньшую роль. Поэтому результаты при использовании других видеокарт, или, даже, другой версии драйвера, могут быть совершенно иными.

Тесты с отключенным сглаживанием (для удобства восприятия отмечены синим цветом) показали примерно равную картину, что свидетельствует о небольшой разнице нагрузок на видеокарту.

Кроме того, проглядывается явное соответствие показателей фпс, при использовании одинакового метода сглаживания, для AF 8x и AF 16x. При этом, разница колеблется в диапазоне от 1 до 4 фпс (за исключением MSAA 8x, где разница составляет 11 фпс). Это говорит о том, что использование фильтрации 16х может быть очень полезным, если необходимо повысить качество картинки, без существенного удара по производительности.

И все же, необходимо оговориться, что получить такие же значения фпс непосредственно в игре попросту нереально, поскольку многие сцены оказываются значительно сложнее, особенно с множеством игроков.

Тесты картинки:

И так, что же мы имеем? Мы узнали о проявлении различных конфигураций настроек на производительность. "Но зачем же все это нужно?" - спросите вы. Для повышения качества отображаемой картинки, отвечу я. А есть ли, вообще, это повышение? Для ответа на этот вопрос предлагаю взглянуть на следующие скришоты:

Billinear / MSAA 2x Trillinear / MSAA 2x AF 2x / MSAA 2x
AF 2x / CSAA 8x AF 2x / MSAA 8x AF 2x / CSAA 16x
AF 2x / CSAA 16xQ AF 8x / MSAA x2 AF 8x / CSAA 8x
AF 8x / MSAA 8x AF 8x / CSAA 16x AF 8x / CSAA 16xQ
AF 16x / MSAA 2x AF 16x / CSAA 8x AF 16x / MSAA 8x
AF 16x / CSAA 16x AF 16x / CSAA 16xQ Billinear / CSAA 16xQ

Как видно, особой разницы в комбинациях "выше" AF 8x / MSAA 8x (CSAA 8x), попросту нет. Но при этом получается ощутимый удар по производительности, особенно при использовании Coverage Sampling AntiAliasing.

Выводы:

Наверняка среди читающих данную статью найдутся игроки Cs:s, HL2 и других игр на основе движка Source. Им эта статья окажется более интересной и познавательной, чем остальным. Однако целью данной писанины было лишь рассказать о современных технологиях, помогающих улучшить зрительное восприятие игр. А тесты - как способ показать на практике изложенную теорию.

Разумеется, для достоверности показаний следовало проводить тесты производительности как на других видеочипах, так и на дополнительных играх.

Как бы то не было, возвращаясь к теме данной статьи, каждый сам выбирает с какими настройками играть. И я не буду давать советов или рекомендаций, поскольку они заранее обречены на провал. Надеюсь, вышеизложенная теория с тестами помогут вам ближе ознакомиться с описанными технологиями.

By Stormcss


Злостно пинать ногами

Привет всем! Сегодня очень интересная статья о тонкой настройке видеокарты для высокой производительности в компьютерных играх. Согласитесь друзья, что после установки драйвера видеокарты вы один раз открыли «Панель управления Nvidia» и увидев там незнакомые слова: DSR, шейдеры, CUDA, синхроимпульс, SSAA, FXAA и так далее, решили туда больше не лазить. Но тем не менее, разобраться во всём этом можно и даже нужно, ведь от данных настроек напрямую зависит производительность . Существует ошибочное мнение, что всё в этой мудрёной панели настроено правильно по умолчанию, к сожалению это далеко не так и опыты показывают, правильная настройка вознаграждается весомым увеличением кадровой частоты. Так что приготовьтесь, будем разбираться в потоковой оптимизации, анизотропной фильтрации и тройной буферизации. В итоге вы не пожалеете и вас будет ждать награда в виде увеличения FPS в играх.

Настройка видеокарты Nvidia для игр

Темпы развития игрового производства с каждым днем набирают все больше и больше оборотов, впрочем, как и курс основной денежной единицы в России, а поэтому актуальность оптимизации работы железа, софта и операционной системы резко повысилась. Держать своего стального жеребца в тонусе за счет постоянных финансовых вливаний не всегда удается, поэтому мы с вами сегодня и поговорим о повышении быстродействия видеокарты за счет ее детальной настройки. В своих статьях я неоднократно писал о важности установки видеодрайвера, поэтому , думаю, можно пропустить. Я уверен, все вы прекрасно знаете, как это делать, и у всех вас он давно уже установлен.

Итак, для того, чтобы попасть в меню управления видеодрайвером, кликайте правой кнопкой мыши по любому месту на рабочем столе и выбирайте в открывшемся меню «Панель управления Nvidia».

После чего, в открывшемся окне переходите во вкладку «Управление параметрами 3D».

Здесь мы с вами и будем настраивать различные параметры, влияющие на отображение 3D картинки в играх. Не трудно понять, что для получения максимальной производительности видеокарты придется сильно порезать изображение в плане качества, так что будьте к этому готовы.

Итак, первый пункт «CUDA – графические процессоры ». Здесь представлен список видеопроцессоров, один из которых вы можете выбрать, и он будет использоваться приложениями CUDA. CUDA (Compute Unified Device Architecture) – это архитектура параллельных вычислений использующаяся всеми современными графическими процессорами для увеличения вычислительной производительности.

Следующий пункт «DSR - Плавность » мы пропускаем, потому что он является частью настройки пункта "DSR - Степень”, а его в свою очередь нужно отключать и сейчас я объясню почему.

DSR (Dynamic Super Resolution) – технология позволяющая рассчитывать картинку в играх в более высоком разрешении, а затем масштабирующая полученный результат до разрешения вашего монитора. Для того чтобы вы поняли для чего эта технология вообще была придумана и почему она не нужна нам для получения максимальной производительности, я попробую привести пример. Наверняка вы часто замечали в играх, что мелкие детали, такие как трава и листва очень часто мерцают или рябят при движении. Связано это с тем, что, чем меньше разрешение, тем меньше число точек выборки для отображения мелких деталей. Технология DSR позволяет это исправить за счет увеличения числа точек (чем больше разрешение, тем больше число точек выборки). Надеюсь, так будет понятно. В условиях максимальной производительности эта технология нам не интересна так, как затрачивает довольно много системных ресурсов. Ну а с отключенной технологией DSR, настройка плавности, о которой я писал чуть выше, становится невозможна. В общем, отключаем и идем дальше.

Далее идет анизотропная фильтрация . Анизотропная фильтрация – алгоритм компьютерной графики, созданный для улучшения качества текстур, находящихся под наклоном относительно камеры. То есть при использовании данной технологии текстуры в играх становятся более четкие. Если сравнивать антизотропную фильтрацию со своими предшественниками, а именно с билинейной и трилинейной фильтрациями, то анизотропная является самой прожорливой с точки зрения потребления памяти видеокарты. Данный пункт имеется только одну настройку – выбор коэффициента фильтрации. Не трудно догадаться, что данную функцию необходимо отключать.

Следующий пункт – вертикальный синхроимпульс . Это синхронизация изображения с частотой развертки монитора. Если включить данный параметр, то можно добиться максимально плавного геймплея (убираются разрывы изображения при резких поворотах камеры), однако зачастую возникают просадки кадров ниже частоты развертки монитора. Для получения максимального количества кадров в секунду данный параметр лучше отключить.

Заранее подготовленные кадры виртуальной реальности . Функция для очков виртуальной реальности нам не интересна, так как VR еще далека до повседневного использования обычных геймеров. Оставляем по умолчанию – использовать настройку 3D приложения.

Затенение фонового освещения . Делает сцены более реалистичными за счет смягчения интенсивности окружающего освещения поверхностей, которые затенены находящимися рядом объектами. Функция работает не во всех играх и очень требовательна к ресурсам. Поэтому сносим ее к цифровой матери.

Кэширование шейдеров . При включении данной функции центральный процессор сохраняет скомпилированные для графического процессора шейдеры на диск. Если этот шейдер понадобится еще раз, то GPU возьмет его прямо с диска, не заставляя CPU проводить повторную компиляцию данного шейдера. Не трудно догадаться, что если отключить этот параметр, то производительность упадет.

Максимальное количество заранее подготовленных кадров . Количество кадров, которое может подготовить ЦП перед их обработкой графическим процессором. Чем выше значение, тем лучше.

Многокадровое сглаживание (MFAA) . Одна из технологий сглаживания используемая для устранения "зубчатости” на краях изображений. Любая технология сглаживания (SSAA, FXAA) очень требовательна к графическому процессору (вопрос лишь в степени прожорливости). Выключаем.

Потоковая оптимизация . Благодаря включению этой функции приложение может задействовать сразу несколько ЦП. В случае, если старое приложение работает некорректно попробуй поставить режим "Авто” или же вовсе отключить эту функцию.

Режим управления электропитанием . Возможно два варианта – адаптивный режим и режим максимальной производительности. Во время адаптивного режима энергопотребление зависит напрямую от степени загрузки ГП. Этот режим в основном нужен для снижения энергопотребления. Во время режима максимальной производительности, как не трудно догадаться, поддерживается максимально возможный уровень производительности и энергопотребления независимо от степени загрузки ГП. Ставим второй.

Сглаживание – FXAA, Сглаживание – гамма-коррекция, Сглаживание – параметры, Сглаживание – прозрачность, Сглаживание - режим . Про сглаживание я уже писал чуть выше. Выключаем всё.

Тройная буферизация . Разновидность двойной буферизации; метод вывода изображения, позволяющий избежать или уменьшить количество артефактов (искажение изображения). Если говорить простыми словами, то увеличивает производительность. НО! Работает эта штука только в паре с вертикальной синхронизацией, которую, как вы помните, мы до этого отключили. Поэтому этот параметр тоже отключаем, он для нас бесполезен.