Камни по знакам зодиака

Как рассчитать сечение вентиляционного канала. Как сделать расчет естественной вентиляции. Виды вентиляционных систем по способу создания тяги

Естественная вентиляция помещения — представляет собой спонтанное перемещение воздушных масс в следствии разницы его температурных режимов в не дома и внутри. Данный вид вентиляция делится на бесканальную и канальную, относительно способна работы являться непрерывной и периодическая.

Систематическое движение фрамуг, форточек, дверей и окон подразумевает под самой процедуру проветривания. Вентиляция бесканального вида, сформирована на стабильном основании в комнатах промышленного типа со ощутимыми тепловыми выделениями, организующая нужную частоту обмена воздушных масс в средине их, этот процесс называются аэрированием.

В частных и многоэтажных домах больше применяется природная вентиляционная система канального вида, каналы в какой расположены в вертикальном положении в специализированных блоках, шахтах либо расположены в самих стенках.

Вычисление аэрации

Аэрация промышленных комнат летом гарантирует поступление воздушных потоков сквозь просветы снизу ворот и входных дверей. В прохладные месяца поступление в нужных размерах совершается под средством верхних просветов, от 4 м и больше над уровнем пола. Вентиляция на протяжении целого года выполнялась при помощи шахт, дефлекторов и форточек.

Зимой фрамуги открывают только в участках над генераторами усиленных тепловых выделений. Во время генерации в комнатах здания лишней очевидной теплоты, то температурный режим воздуха в нем постоянно больше, чем температурный режим вне здания, и, в соответствии, плотность менее.

Данное явление и приводит к присутствию разницы давлений атмосферы вне и внутри комнат . В плоскости на конкретной высоте комнаты, которую именуют как плоскость одинаковых давлений, данная разница отсутствует, то есть, приравнивается к нулю.

Выше данной плоскости имеется некое излишнее напряжение, что приводит к удалению горячей атмосферы наружу, а внизу от данной плоскости, — разрежение, обусловливающее приток свежего воздуха. Давление, вынуждающее передвигаться воздушные массы в процессе природной вентиляции, можно установить исходя их вычислений:


Естественная вентиляция формула

Ре = (вн — н)hg

  • где н — плотность воздуха вне помещения, кг/м3;
  • вн — плотность воздушных масс в помещении, кг/м3;
  • h — расстояние между приточным проемом и центром вытяжного, м;
  • g — ускорение свободного падения, 9,81 м/с2.

Метод проветривания (аэрации) построек с помощью раскрывающихся фрамуг считается довольно верным и результативным.

При вычислении природной вентиляции помещений учитываются установление участка нижних и верхних просветов. Сперва получают значение участка нижних просветов. Задается модель аэрации постройки.


Расчет естественной вытяжной вентиляции

Потом, в связи от участка открытия верхних и нижних соответственно, приточных и вытяжных фрамуг в помещении приблизительно в центре высоты сооружения получается степень одинаковых давлений, в этом месте влияние точно также нулю. В соответствии, влияние в степени сосредоточении нижних просветов станет равняться:

  • где ср– равна средней температуре плотности воздушных масс в помещении, кг/м3;
  • h1– высoта oт плоскости одинаковых давлений до нижних просветов, м.

На уровне центров верхних просветов, выше плоскости одинаковых давлений образуется избыточное напряжение, Па, равняющееся:

Именно это давление и оказывает воздействие на вытяжку воздуха. Общее напряжение, располагающее для обмена воздушных потоков в комнате:


Скорость естественной вентиляции

Скорость воздуха в центре нижних просветов, м/с:

  • где L – необходимый обмен воздушными массами, м3/час;
  • 1 – коэффициент расхода, зависящий от конструкции створок нижних просветов и угла их открытия (при 90 открытия, =0,6; 30 – =0,32);
  • F1– площадь нижних просветов, м2

Затем вычисляются потери, Па, в нижних просветах:

Приняв, что Ре = Р1+Р2 =h(н — ср), а температура удаляемого воздуха tуд=tрз+(10 — 15oС), определяем плотности н и ср, которые соответствуют температурам tн и tср.

Лишнее давление в плоскости верхних просветов:

Необходимая их площадь (м2):

F2 = L /(2V22) = L /(2(2Р2g/ср)1⁄2)


Вычисление и расчет вентиляционных каналов

Вычисление естественной системы проветривания канального вида сближается к установлению активного разреза воздуховодов, какие с целью доступа необходимого числа воздуха выражают противодействие, надлежащее вычисленному напряжению.

Для самого длительного тракта сети устанавливают издержки напряжения в каналах воздуховода как сумму издержкой напряжения в абсолютно всех его местах. В каждом из них издержки давления формируются с потерь на трение (RI) и издержек в местах противодействия (Z):

  • где R — удельная потеря напряжения по длине участка от трения, Па/м;
  • l — длина участка, м.

Площадь живого сечения воздуховодов, м2:

  • где L — расход воздуха, м3/ч;
  • v — скорость движения воздуха в воздуховоде, м/с (равна 0,5… 1,0 м/с).

Задавая скорость движения воздуха по вентиляции, и прочитывают площадь его активного сечения и масштабы. При помощи специализированных номограмм либо табличных расчётов для округлой формы воздуховодов устанавливают издержки напряжения на трение.


Естественная вентиляция расчет воздуховодов

Для прямоугольной формы воздуховодов этой концепции проветривания планируют диаметр dЭ равновесный округлому воздуховоду:

dЭ = 2 а b / (а + b)

  • где, а и b — длина сторон прямоугольного воздуховода, м.

В случае использования воздуховодов сделанных не из метала, их удельные издержки давления по трению R, взятые с номограммы для стальных воздуховодов, изменяют, умножив на соответствующий коэффициент k:

  • для шлакогипсовых — 1,1;
  • для шлакобетонных — 1,15;
  • для кирпичных — 1,3.

Избытки давления, Па, на преодоление определённых сопротивлений для разных участков вычисляется за уравнением:

  • где – сумма коэффициентов противодействий на участке;
  • v2/2 — динамическое напряжение, Па, взятое с нормативов.

Для создания концепции непринужденной вентиляции предпочтительно остерегаться извилистых заворотов, множественного числа задвижек и клапанов, так как утраты на местные противодействия как правило в каналах воздуховодов достигают вплоть до 91% от всех затрат.

Естественная вентиляция содержит небольшой радиус воздействия и среднюю результативность для комнат излишками тепла в которых соввем малы, что возможно относить недостаткам, а достоинством — легкость системы, невысокая цена и простота в сервисном обслуживании.


Естественная вентиляция пример расчета

Общая площадь – 60 м2;
ванная, кухня с газовой плитой, туалет;
кладовая комната – 4,5 м2;
высота потолков – 3 м.

Для оборудования воздуховодов будут применяться бетонные блоки.

Приток воздуха с улицы по нормативам: 60 *3 * 1 = 180 м3/час.

Вытяжка воздуха из помещения:
кухни – 90 м3/час;
ванной – 25 м3/час;
туалета – 25 м3/час;
90 + 25 + 25 = 140 м3/час

Частота обновления воздушных масс в кладовой – 0,2 в 1/час.
4,5 * 3 * 0,2 = 2,7 м3/час

Нужный вывод воздуха: 140 + 2,7 = 142,7 м3/час.

Хотя для расчетов вентиляции существует множество программ, многие параметры все еще определяются по старинке, с помощью формул. Расчет нагрузки на вентиляцию, площади, мощности и параметров отдельных элементов производят после составления схемы и распределения оборудования.

Это сложная задача, которая под силу лишь профессионалам. Но если необходимо подсчитать площадь некоторых элементов вентиляции или сечение воздуховодов для небольшого коттеджа, реально справиться самостоятельно.

Расчет воздухообмена

Если в помещении нет ядовитых выделений или их объем находится в допустимых пределах, воздухообмен или нагрузка на вентиляцию рассчитывается по формуле:

R = n * R 1,

здесь R1 – потребность в воздухе одного сотрудника, в куб.м\час, n – количество постоянных сотрудников в помещении.

Если объем помещения на одного сотрудника составляет больше 40 кубометров и работает естественная вентиляция, не нужно рассчитывать воздухообмен.

Для помещений бытового, санитарного и подсобного назначения расчет вентиляции по вредностям производится на основании утвержденных норм кратности воздухообмена:

  • для административных зданий (вытяжка) – 1,5;
  • холлы (подача) – 2;
  • конференц-залы до 100 человек вместимостью (по подаче и вытяжке) – 3;
  • комнаты отдыха: приток 5, вытяжка 4.

Для производственных помещений, в которых постоянно или периодически в воздух выделяются опасные вещества, расчет вентиляции производится по вредностям.

Воздухообмен по вредностям (парам и газам) определяют по формуле:

Q = K \(k 2- k 1),

здесь К – количество пара или газа, появляющееся в здании, в мг\ч, k2 – содержание пара или газа в оттоке, обычно величина равна ПДК, k1 – содержание газа или пара в приточке.

Разрешается концентрация вредностей в приточке до 1\3 от ПДК.

Для помещений с выделением избыточного тепла воздухообмен рассчитывается по формуле:

Q = G изб\ c (tyx tn ),

здесь Gизб – избыточное тепло, вытягиваемое наружу, измеряется в Вт, с удельная теплоемкость по массе, с=1 кДж, tyx – температура удаляемого из помещения воздуха, tn – температура приточки.

Расчет тепловой нагрузки

Расчет тепловой нагрузки на вентиляцию осуществляется по формуле:

Q в= V н * k * p * C р(t вн – t нро),

в формуле расчета тепловой нагрузки на вентиляцию – внешний объем строения в кубометрах, k – кратность воздухообмена, tвн – температура в здании средняя, в градусах Цельсия, tнро – температура воздуха снаружи, используемая при расчетах отопления, в градусах Цельсия, р – плотность воздуха, в кг\кубометр, Ср – теплоемкость воздуха, в кДж\кубометр Цельсия.

Если температура воздуха ниже tнро снижается кратность обмена воздуха, а показатель расхода тепла считается равной , постоянной величиной.

Если при расчете тепловой нагрузки на вентиляцию невозможно уменьшить кратность воздухообмена, расход тепла рассчитывают по температуре отопления.

Расход тепла на вентиляцию

Удельный годовой расход тепла на вентиляцию рассчитывается так:

Q= * b * (1-E),

в формуле для расчета расхода тепла на вентиляцию Qo – общие теплопотери строения за сезон отопления, Qb – поступления тепла бытовые, Qs – поступления тепла снаружи (солнце), n – коэффициент тепловой инерции стен и перекрытий, E – понижающий коэффициент. Для индивидуальных отопительных систем 0,15 , для центральных 0,1 , b – коэффициент теплопотерь:

  • 1,11 – для башенных строений;
  • 1,13 – для строений многосекционных и многоподъездных;
  • 1,07 – для строений с теплыми чердаками и подвалами.

Расчет диаметра воздуховодов

Диаметры и сечения воздуховодов вентиляции рассчитывают после того, как составлена общая схема системы. При расчетах диаметров воздуховодов вентиляции учитывают следующие показатели:

  • Объем воздуха (приточного или вытяжного), который должен пройти через трубу за заданный промежуток времени, куб.м\ч;
  • Скорость движения воздуха. Если при расчетах вентиляционных труб скорость движения потока занижена, установят воздуховоды слишком большого сечения, что влечет дополнительные расходы. Завышенная скорость приводит к появлению вибраций, усилению аэродинамического гула и повышению мощности оборудования. Скорость движения на притоке 1,5 – 8 м\сек, она меняется в зависимости от участка;
  • Материал вентиляционной трубы. При расчете диаметра этот показатель влияет на сопротивление стенок. Например, наиболее высокое сопротивление оказывает черная сталь с шероховатыми стенками. Поэтому расчетный диаметр воздуховода вентиляции придется немного увеличить по сравнению с нормами для пластика или нержавейки.

Таблица 1 . Оптимальная скорость воздушного потока в трубах вентиляции.

Когда известна пропускная способность будущих воздуховодов, можно рассчитать сечение воздуховода вентиляции:

S = R \3600 v ,

здесь v – скорость движения воздушного потока, в м\с, R – расход воздуха, кубометры\ч.

Число 3600 – временной коэффициент.

здесь: D – диаметр вентиляционной трубы, м.

Расчет площади элементов вентиляции

Расчет площади вентиляции необходим в том случае, когда элементы изготавливаются из листового металла и нужно определить количество и стоимость материала.

Площадь вентиляции рассчитывают электронные калькуляторы или специальные программы, их во множестве можно найти в интернете.

Мы приведем несколько табличных значений наиболее популярных элементов вентиляции.

Диаметр, мм Длина, м
1 1,5 2 2,5
100 0,3 0,5 0,6 0,8
125 0,4 0,6 0,8 1
160 0,5 0,8 1 1,3
200 0,6 0,9 1,3 1,6
250 0,8 1,2 1,6 2
280 0,9 1,3 1,8 2,2
315 1 1,5 2 2,5

Таблица 2 . Площадь прямых воздуховодов круглого сечения.

Значение площади в м. кв. на пересечении горизонтальной и вертикальной строчки.

Диаметр, мм Угол, град
15 30 45 60 90
100 0,04 0,05 0,06 0,06 0,08
125 0,05 0,06 0,08 0,09 0,12
160 0,07 0,09 0,11 0,13 0,18
200 0,1 0,13 0,16 0,19 0,26
250 0,13 0,18 0,23 0,28 0,39
280 0,15 0,22 0,28 0,35 0,47
315 0,18 0,26 0,34 0,42 0,59

Таблица 3 . Расчет площади отводов и полуотводов круглого сечения.

Расчет диффузоров и решеток

Диффузоры используются для подачи или удаления воздуха из помещения. От правильности расчета количества и расположения диффузоров вентиляции зависит чистота и температура воздуха в каждом уголке помещения. Если установить диффузоров больше, увеличится давление в системе, а скорость падает.

Количество диффузоров вентиляции рассчитывается так:

N = R \(2820 * v * D * D ),

здесь R – пропускная способность, в куб.м\час, v – скорость воздуха, м\с, D – диаметр одного диффузора в метрах.

Количество вентиляционных решеток можно рассчитать по формуле:

N = R \(3600 * v * S ),

здесь R – расход воздуха в куб.м\час, v – скорость воздуха в системе, м\с, S – площадь сечения одной решетки, кв.м.

Расчет канального нагревателя

Расчет калорифера вентиляции электрического типа производится так:

P = v * 0,36 * ∆ T

здесь v – объем пропускаемого через калорифер воздуха в куб.м.\час, ∆T – разница между температурой воздуха снаружи и внутри, которую необходимо обеспечить калориферу.

Этот показатель варьирует в пределах 10 – 20, точная цифра устанавливается клиентом.

Расчет нагревателя для вентиляции начинается с вычисления фронтальной площади сечения:

Аф= R * p \3600 * Vp ,

здесь R – объем расхода приточки, куб.м.\ч, p – плотность атмосферного воздуха, кг\куб.м, Vp – массовая скорость воздуха на участке.

Размер сечения необходим для определения габаритов нагревателя вентиляции. Если по расчету площадь сечения получается чересчур большой, необходимо рассмотреть вариант из каскада теплобменников с суммарной расчетной площадью.

Показатель массовой скорости определяется через фронтальную площадь теплообменников:

Vp = R * p \3600 * A ф.факт

Для дальнейшего расчета калорифера вентиляции определяем нужное для согрева потока воздуха количества теплоты:

Q =0,278 * W * c (T п- T у),

здесь W – расход теплого воздуха, кг\час, Тп – температура приточного воздуха, градусы Цельсия, Ту – температура уличного воздуха, градусы Цельсия, c – удельная теплоемкость воздуха, постоянная величина 1,005.

Так как в приточных системах вентиляторы размещаются перед теплообменником, расход теплого воздуха вычисляем так:

W = R * p

Рассчитывая калорифер вентиляции, следует определить поверхность нагрева:

Апн=1,2 Q \ k (T с.т- T с.в),

здесь k – коэффициент отдачи калорифером тепла, Tс.т – средняя температура теплоносителя, в градусах Цельсия, Tс.в – средняя температура приточки, 1,2 – коэффициент остывания.

Расчет вытесняющей вентиляции

При вытесняющей вентиляции в помещении оборудуются рассчитанные восходящие потоки воздуха в местах повышенного выделения тепла. Снизу подается прохладный чистый воздух, который постепенно поднимается и в верхней части помещения удаляется наружу вместе с избытком тепла или влаги.

При грамотном расчете вытесняющая вентиляция намного эффективнее перемешивающей в помещениях следующих типов:

  • залы для посетителей в заведениях общепита;
  • конференц-залы;
  • любые залы с высокими потолками;
  • ученические аудитории.

Рассчитанная вентиляция вытесняет менее эффективно если:

  • потолки ниже 2м 30 см;
  • главная проблема помещения – повышенное выделение тепла;
  • необходимо понизить температуру в помещениях с низкими потолками;
  • в зале мощные завихрения воздуха;
  • температура вредностей ниже, температуры воздуха в помещении.

Вытесняющая вентиляция рассчитывается исходя из того, что тепловая нагрузка на помещение составляет 65 – 70 Вт\кв.м, при расходе до 50 л на кубометр воздуха в час. Когда тепловые нагрузки выше, а расход ниже, необходимо организовывать перемешивающую систему, комбинированную с охлаждением сверху.

Одним из условий создания комфортного микроклимата в жилых и производственных помещениях является наличие инженерной системы, благодаря которой осуществляется циркуляция воздуха. Чтобы обеспечить ее эффективное функционирование, необходимо правильно рассчитать длину и диаметр вентиляционной трубы. Для этого пользуются несколькими методиками, в зависимости от характеристик инженерной системы.

Схема вентиляции частного дома

Последствия плохой вентиляции

При неправильной организации системы притока свежего воздуха в помещениях будет ощущаться нехватка кислорода и повышенная влажность. Ошибки в конструировании вытяжки чреваты появлением копоти на стенах кухни, запотеванием окон и появлением грибка на поверхности стен.

Запотевание окон при недостаточной вытяжке

При этом нужно учитывать, что для монтажа системы вентиляции могут использоваться трубы круглого или квадратного сечения. При удалении воздуха без применения специальных устройств целесообразно устанавливать круглые воздуховоды, так как они прочнее, герметичнее и отличаются хорошими аэродинамическими характеристиками. Квадратные трубы лучше использовать для принудительной вентиляции.

Расчет системы вентиляции

Нормативный объем приточного воздуха

Обычно в жилых зданиях используются системы естественной вентиляции. В этом случае наружный воздух поступает внутрь помещений через фрамуги, форточки и специальные клапаны, а его удаление происходит с помощью вентиляционных каналов. Они могут быть приставными или располагаться во внутренних стенах. Возведение вентиляционных каналов во внешних ограждающих конструкциях не допускается из-за возможного образования конденсата на поверхности и последующего повреждения сооружений. Кроме того, охлаждение может снижать скорость воздухообмена.

Обеспечение естественного притока воздуха с помощью проветривания

Определение параметров вентиляционных труб для жилых зданий осуществляется на основании требований, регламентируемых СНиП, и другими нормативными документами. Кроме того, важен и показатель кратности обмена, который отражает эффективность функционирования вентиляционной системы. Согласно ему объем притока воздуха в помещение зависит от его назначения и составляет:

  • Для жилых зданий -3 м 3 /час на 1 м 2 площади, независимо от числа людей, пребывающих на территории. По санитарным нормам для временно находящихся достаточно 20 м 3 /час, а для постоянных жителей - 60 м 3 / час.
  • Для подсобных сооружений (гараж и т.п.) -не менее 180 м 3 /час.

Чтобы рассчитать диаметр , в качестве основы берут систему с естественным притоком воздуха, без установки специальных устройств. Самый простой вариант - воспользоваться соотношением площади помещения и сечения вентиляционного отверстия.

В жилых зданиях на 1 м 2 необходимо 5,4 м 2 сечения воздуховода, а в подсобных - около 17,6 м 2 . Однако менее 15 м 2 его диаметр быть не может, иначе не обеспечивается циркуляция воздуха. Более точные данные получаются при помощи сложных расчетов.

Алгоритм определения диаметра вентиляционной трубы

На основании таблицы, приведенной в СНиП, производится определение параметров вентиляционной трубы на основании кратности воздухообмена. Она представляет собой величину, которая показывает, сколько раз в течение часа происходит замена воздуха в помещении, и зависит от его объема. Прежде чем определить диаметр трубы для вентиляции, выполняют следующее:


Диаграмма для определения диаметра вентиляционной трубы

Особенности определения длины вентиляционных труб

Еще одним важным параметром при проектировании систем вентиляции является длина наружной трубы. Она объединяет все находящиеся в доме каналы, по которым осуществляется циркуляция воздуха, и служит для его вывода наружу.

Расчет по таблице

Высота вентиляционной трубы зависит от ее диаметра и определяется по таблице. В ее ячейках указано сечение воздуховодов, а в столбце слева - ширина труб. Их высота указывается в верхней строке и обозначается в мм.

Подбор высоты трубы вентиляции по таблице

При этом нужно учитывать:

  • Если вентиляционная труба находится рядом с , то их высота должна совпадать, чтобы избежать проникновения дыма внутрь помещений во время отопительного сезона.
  • При расположении воздуховода от конька или парапета на расстоянии, которое не превышает 1,5 м, его высота должна быть больше 0,5 м. Если труба находится в пределах от 1,5 до 3 м от конька крыши, то она не может быть ниже его.
  • Высота вентиляционной трубы над крышей плоской формы не может быть меньше 0,5 м.

Расположение вентиляционных труб относительно конька крыши

При выборе трубы для сооружения вентиляции и определения ее месторасположения необходимо предусмотреть достаточное сопротивление ветру. Она должна выдерживать шторм в 10 баллов, что составляет 40-60 кг на 1 м 2 поверхности.

Использование программного обеспечения

Пример расчета естественной вентиляции с помощью специальных программ

Расчет естественной вентиляции менее трудоемок, если воспользоваться для этого специальной программой. Для этого сначала определяется оптимальный объем притока воздуха, в зависимости от назначения помещения. Затем на основании полученных данных и особенностей проектируемой системы делают расчет вентиляционной трубы. При этом программа позволяет учитывать:

  • среднюю температуру внутри и снаружи;
  • геометрическую форму воздуховодов;
  • шероховатость внутренней поверхности, которая зависит от материала труб;
  • сопротивление движению воздуха.

Система вентиляции с трубами круглого сечения

В результате получают необходимые размеры вентиляционных труб для сооружения инженерной системы, которая должна обеспечивать циркуляцию воздуха в определенных условиях.

В процессе расчета параметров вентиляционной трубы следует обращать внимание и на локальное сопротивление при циркуляции воздуха. Оно может возникать из-за наличия сеток, решеток, отводов и других особенностей конструкции.

.

Правильный расчет параметров вентиляционных труб позволит спроектировать и построить эффективную систему, которая даст возможность контролировать уровень влажности в помещениях и обеспечит комфортные условия для проживания.

Мечтаете, чтобы в доме был здоровый микроклимат и ни в одной комнате не пахло затхлостью и сыростью? Чтобы дом был по-настоящему комфортным, еще на стадии проектирования необходимо провести грамотный расчет вентиляции.

Если во время строительства дома упустить этот важный момент, в дальнейшем придется решать целый ряд проблем: от удаления плесени в ванной комнате до нового ремонта и установки системы воздуховодов. Согласитесь, не слишком приятно видеть на кухне на подоконнике или в углах детской комнаты рассадники черной плесени, да и заново погружаться в ремонтные работы.

В представленной нами статье собраны полезные материалы по расчету систем вентилирования, справочные таблицы. Приведены формулы, наглядные иллюстрации и реальный пример для помещений различного назначения и определенной площади, продемонстрированный в видеосюжете.

При правильных расчетах и грамотном монтаже вентилирование дома осуществляется в подходящем режиме. Это означает, что воздух в жилых помещениях будет свежий, с нормальной влажностью и без неприятных запахов.

Если же наблюдается обратная картина, например, постоянная духота, в ванной комнате или другие негативные явления, то нужно проверить состояние вентиляционной системы.

Галерея изображений

Выводы и полезное видео по теме

Ролик #1. Полезные сведения по принципам работы системы вентилирования:

Ролик #2. Вместе с отработанным воздухом жилище покидает и тепло. Здесь наглядно продемонстрированы расчеты тепловых потерь, связанных с работой системы вентиляции:

Правильный расчет вентиляции - основа ее благополучного функционирования и залог благоприятного микроклимата в доме или квартире . Знание основных параметров, на которых базируются такие вычисления, позволит не только правильно спроектировать систему вентилирования во время строительства, но и откорректировать ее состояние, если обстоятельства изменятся.

Правильное устройство вентиляции в доме значительно улучшает качество жизни человека. При неправильном расчете приточно – вытяжной вентиляции возникает куча проблем – у человека со здоровьем, у постройки с разрушением.

Перед началом строительства обязательно и необходимо произвести расчёты и, соответственно, применить их в проекте.


ФИЗИЧЕСКИЕ СОСТАВЛЯЮЩИЕ РАСЧЁТОВ

По способу работы, в настоящее время, вентиляционные схемы делятся на:

  1. Вытяжные. Для удаления использованного воздуха.
  2. Приточные. Для впуска чистого воздуха.
  3. Рекуперационные. Приточно-вытяжные. Удаляют использованный и впускают чистый.


В современном мире схемы вентиляции включают в себя различное дополнительное оборудование:

  1. Устройства для подогрева или охлаждения подаваемого воздуха.
  2. Фильтры для очистки запахов и примесей.
  3. Приборы для увлажнения и распределения воздуха по помещениям.


При расчёте вентиляции учитывают следующие величины:

  1. Расход воздуха в куб.м./час.
  2. Давление в воздушных каналах в атмосферах.
  3. Мощность подогревателя в квт-ах.
  4. Площадь сечения воздушных каналов в кв.см.


Расчет вытяжной вентиляции пример

Перед началом расчёта вытяжной вентиляции необходимо изучить СН и П (Система Норм и Правил) устройства вентиляционных систем. По СН и П количество воздуха необходимого для одного человека зависит от его активности.

Маленькая активность – 20 куб.м./час. Средняя – 40 кб.м./ч. Высокая – 60 кб.м./ч. Далее учитываем количество человек и объём помещения.

Кроме этого необходимо знать кратность – полный обмен воздуха в течение часа. Для спальни она равна единице, для бытовых комнат – 2, для кухонь, санузлов и подсобных помещений – 3.

Для примера – расчёт вытяжной вентиляции комнаты 20 кв.м.

Допустим, в доме живут два человека, тогда:

V(объём) комнаты равен: SхН, где Н – высота комнаты (стандартная 2,5 метра).

V = S х Н = 20 х 2,5 = 50 куб.м.

В таком же порядке рассчитываем производительность вытяжной вентиляции всего дома.


Расчет вытяжной вентиляции производственных помещений

При расчёте вытяжной вентиляции производственного помещения кратность равна 3.

Пример: гараж 6 х 4 х 2,5 = 60 куб.м. Работают 2 человека.

Высокая активность – 60 куб.м./час х 2 = 120 кб.м./ч.

V – 60 куб.м. х 3 (кратность) = 180 кб.м./ч.

Выбираем большее – 180 куб.м./час.

Как правило, унифицированные вентиляционные системы, для простоты установки разделяются на:

  • 100 – 500 куб.м./час. – квартирные.
  • 1000 – 2000 куб.м./час. – для домов и усадеб.
  • 1000 – 10000 куб.м./час. – для заводских и промышленных объектов.


Расчет приточно вытяжной вентиляции

ВОЗДУХОНАГРЕВАТЕЛЬ

В условиях климата средней полосы, воздух, поступающий в помещение необходимо подогревать. Для этого устанавливают приточную вентиляцию с обогревом входящего воздуха.

Нагрев теплоносителя осуществляется различными путями – электро калорифером, впуск воздушных масс около батарейного или печного отопления. Согласно СН и П температура входящего воздуха должна быть не менее 18 гр. цельсия.

Соответственно мощность воздухонагревателя рассчитывается в зависимости от самой низкой (в данном регионе) уличной температуры. Формула для расчета максимальной температуры нагрева помещения воздухонагревателем:

N /V х 2,98 где 2,98 – константа.

Пример: расход воздуха – 180 куб.м./час. (гараж). N = 2 КВт.

Таким образом, гараж можно нагреть до 18 град. При уличной температуре минус 15 град.

ДАВЛЕНИЕ И СЕЧЕНИЕ

На давление и, соответственно, скорость передвижения воздушных масс влияет площадь сечения каналов, а также их конфигурация, мощность электро вентилятора и количество переходов.

При расчёте диаметра каналов эмпирически принимают следующие величины:

  • Для помещений жилого типа – 5,5 кв.см. на 1 кв.м. площади.
  • Для гаража и других производственных помещений – 17,5 кв.см. на 1 кв.м.

При этом добиваются скорости потока 2,4 – 4,2 м/сек.

О РАСХОДЕ ЭЛЕКТРОЭНЕРГИИ

Расход электроэнергии напрямую зависит от длительности времени работы электронагревателя, а время – функция от температуры окружающего воздуха. Обыкновенно, воздух необходимо подогревать в холодное время года, иногда летом в прохладные ночи. Для расчёта используется формула:

S = (T1 х L х d х c х 16 + Т2 х L х c х n х 8) х N/1000

В этой формуле:

S – количество электроэнергии.

Т1 – максимальная дневная температура.

Т2 – минимальная ночная температура.

L – производительность куб.м./час.

с – объёмная теплоёмкость воздуха – 0, 336 вт х час/ кб.м./ град.ц. Параметр зависит от давления, влажности и температуры воздуха.

d – цена электроэнергии днём.

n – цена электроэнергии ночью.

N – количество дней в месяце.

Таким образом, если придерживаться санитарных норм, стоимость вентиляции существенно повышается, зато комфортность проживающих улучшается. Поэтому при устройстве вентиляционной системы целесообразно найти компромисс между ценой и качеством.